
# Lightning Talks Week 6: Contextualization/Design Check-In

### **Team Information**

- Project ID: ssddec24-proj006
- Senior Design Website
- Team members:
  - Deniz Tazegul
  - Liam Janda
  - Taylor Johnson
  - Ritwesh Kumar
- Client: JR Spidell
- Faculty Advisor
  - Dr. Phillip Jones



### **Project Overview**

- Developing a FPGA-based video pipeline
  - MIPI-connected "off the shelf" camera module
  - Video monitor
- Augmented video  $\rightarrow$  active displayport cable  $\rightarrow$  monitor
- Software executes in Linux OS
- STRETCH GOAL: Pass video through a machine learning algorithm



#### IMX219 Image Sensor

## **User for Journey Map: Ethyl**



#### Ethyl

#### Characteristics

- Has a disability & wheelchair-bound
- Poor fine & gross motor skills
- Experiences seizures

#### Hears

• "There are certain tasks that you can't do"

#### Says

• "I want to be able to color inside the lines"

#### **Thinks & Feels**

- Desires independence
- Ability to communicate needs

#### Pain

• Limited ability to perform daily tasks

### **Artifact #1: Journey Map**

| Key<br>Experiences | 1: User uses a<br>motorized<br>wheelchair, has<br>difficulty completing<br>daily tasks        | 2: Received our<br>product and<br>begins<br>researching what<br>they can do with it                                                 | 3: Begin<br>Configuring<br>system to work for<br>that individual set<br>up                                 | 4: Start testing the capabilities                                                                                                     | 5: Can use this<br>product in<br>everyday life                                                                                                                                                    |
|--------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Actions            | She works with a<br>family member to<br>see what options<br>might be available<br>to help her | Begins working<br>with the product<br>for the first time<br>and looking online<br>for similar<br>products to learn<br>how to use it | Attach the video<br>camera to her<br>wheelchair with a<br>ML algorithm that<br>monitors her for<br>seizure | Uses the product<br>with multiple ML<br>algorithms to also<br>help monitor her<br>communication<br>needs and<br>navigational<br>needs | Becomes fully<br>independent and<br>confident in using<br>the product to<br>assist her in with<br>her daily<br>navigational,<br>communication,<br>and health needs<br>(e.g. seizure<br>detection) |
| Feelings           |                                                                                               |                                                                                                                                     |                                                                                                            | ,<br>                                                                                                                                 |                                                                                                                                                                                                   |
|                    |                                                                                               |                                                                                                                                     |                                                                                                            |                                                                                                                                       |                                                                                                                                                                                                   |

### Market Research #1: Intel

- Goliath in hardware design
- Top of the line custom products
  - Parts made in house
  - Processor, memory, graphics processor, etc.
  - Dial in the capabilities of the system



### Market Research #2: LUCI

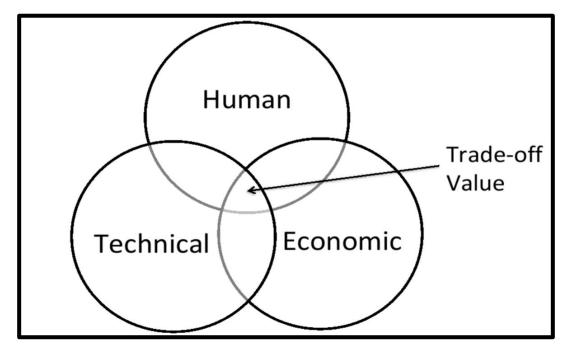
- Software/hardware
  - Environment hazard detection
  - For electric wheelchairs
- For people with physical disabilities



### Market Research #3: EyesOnlt



- Custom configuration
  - $\circ \quad \text{No programming} \quad$


knowledge needed

 Integratable into surveillance systems

### **Artifact #2: Pros/Cons Table**

|               | Pros                               | Cons                                                                                |  |
|---------------|------------------------------------|-------------------------------------------------------------------------------------|--|
| V-PIPE (Ours) | Off-the-shelf hardware             | Proper configuration                                                                |  |
| Intel         | Efficient                          | Specialized components<br>with longer development<br>time                           |  |
| LUCI          | Attachable to existing wheelchairs | Niche market                                                                        |  |
| EyesOnIt      | Easily configurable                | Duplicating the technology<br>may be relatively easy as it<br>isn't too specialized |  |

### **Design Trade-Offs**



#### **Solution Suitability Perspectives**

### Human perspective

### Addressing user needs

- Design choices have not been tested yet, however they should work
  - Previous teams implementation
  - Updated image sensor to work in a variety of different lighting conditions
  - Open source components



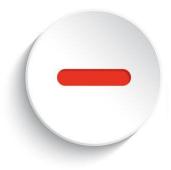
Eye-Tracking Algorithm by a previous SD Team

## Human perspective (continued)

### **Potential project modifications**

- Once the current design is working add more features
  - Combine with senior design team 5 to test functionality
  - Video pre-processing

### **Economic perspective**


### How project improves on existing designs

- Hardware components
  - Commonly available
  - Cost-effective

### **Drawbacks**

- Custom component configuration
- Requires hardware design technical expertise

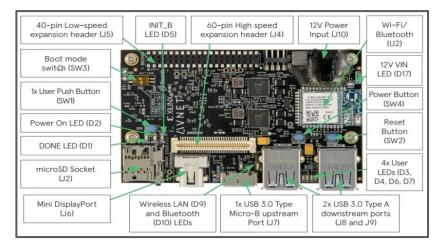




## **Economic perspective (continued)**

### **Potential mitigation strategies**

- Integrate PYNQ & non-PYNQ environments
  - PYNQ runs on a Jupyter
    Notebook server
  - Non-PYNQ runs on a terminal
- Vivado custom hardware overlays
- ILA (Integrated Logic Analyzer) capture and analyze signals (I/O)




### **Economic perspective (continued)**

#### **Potential mitigation strategies**

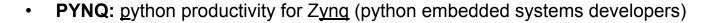
- Can't compete with the efficiency of Intel
  - But someone could build this system themselves
- EyesOnIt uses natural language processing
  - We could technically implement this

## **Technical perspective**



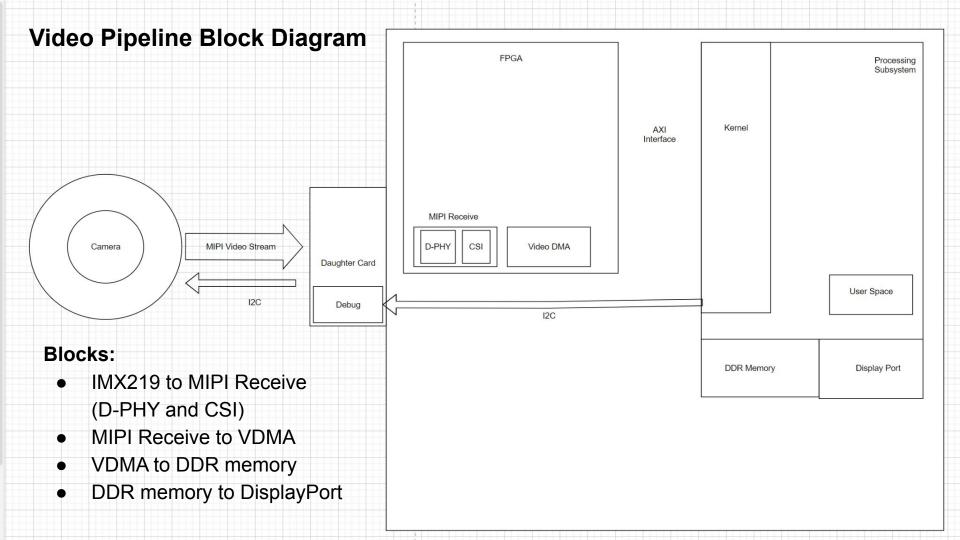
#### Anatomy of Ultra-96 FPGA

#### **External project complexity**


- Using state-of-the-art technology
  - Ultra-96 FPGA created in 2019
  - Image sensors created 10-15 years ago

#### Internal project complexity

Multiple hardware & software components
 & subsystems

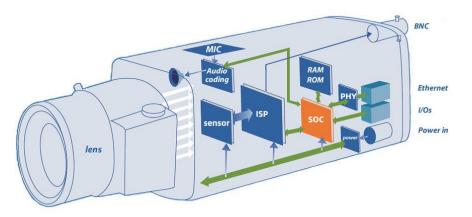

## Vocabulary

- IMX219 image sensor: camera
- **MIPI:** mobile industry processor interface
- CSI: camera serial interface
- **D-PHY:** physical communication layer
- VDMA: video direct memory access
- **DDR:** double data rate (memory)
- **FPGA:** field programmable gate array





#### Ultra-96 FPGA Board

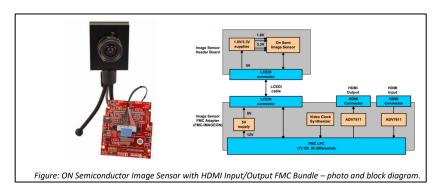



## **Technical perspective (continued)**

#### Internal project complexity

Project requires extensive hardware design expertise

- Select individuals have:
  - A deep understanding of how cameras work
  - Knowledge on how to build a camera from scratch




**Overview of Security Camera** Internals

## **Technical perspective (continued)**

#### • <u>CPRE 488</u>

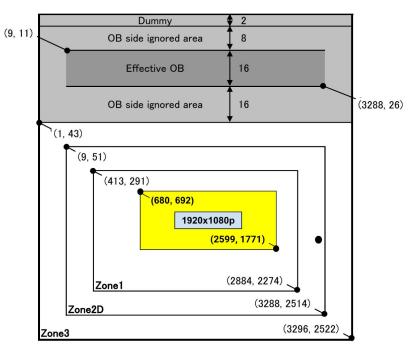
 2-week digital camera lab using image sensors and FPGAs



**CPRE 488 Digital Camera Lab** 

# **Questions?**

# **Background Information**


### **Expertise Development: Ritwesh**

#### **Configuring image sensors**

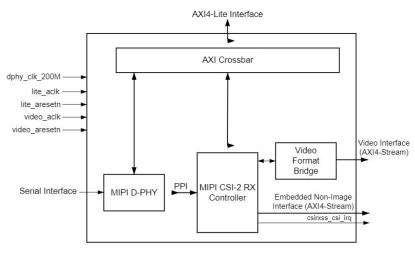
- Signal processing
- Sampling, windowing, ADC (analog-to-digital converter)

#### **Programming in Python**

- CPRE 288 used C
- Move between register and memory space



#### 1920x1080p Frame Format


### **Expertise Development: Deniz**

### **Configure MIPI Controller**

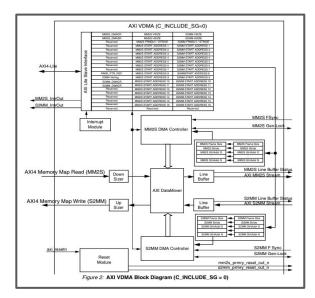
 Correct data transfer protocol

### Code Migration to PYNQ

 Memory access in python vs C/Shell



X14819-031416


## **Expertise Development: Liam**

#### VDMA

- Configure registers
- Understand through datasheets

#### **Code Migration to PYNQ**

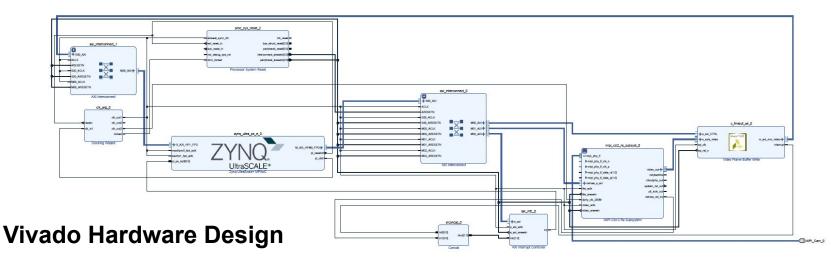
Replace frame buffer with VDMA



#### **VDMA Block Diagram**

### **Expertise Development: Taylor**

#### **Hardware Components**


Vivado overlays

#### **Code Integration/Migration to PYNQ**

Building off previous teams

• Datasheets

• Shell scripts & C

